
Multi-Perspective Enterprise Modelling –
Conceptual Foundation and Implementation
with ADOxx

Alexander Bock and Ulrich Frank

Abstract This chapter describes a method for multi-perspective enterprise mod-
elling (MEMO) and a prototypical implementation of a selected part of the method
with ADOxx, called MEMO4ADO. MEMO has been developed during a period of
more than twenty years and is still a subject of ongoing research. MEMO includes
a set of integrated domain-specific modelling languages to describe organisational
action systems as well as information systems. MEMO4ADO implements a sub-
set of MEMO languages specifically tailored for educational purposes. The chapter
summarizes the background and evolution of MEMO, illustrates the implementation
and functionalities of MEMO4ADO, and outlines future developments.

1 Introduction

1.1 Motivation

Software is a linguistic artefact. On the one hand, this means that it is ultimately
made of some form of machine language. On the other hand, it means that we can
use it, i.e. make sense of it, only if it is supplemented with a linguistic representation
that corresponds to a language with which prospective users are familiar. The better
this correspondence, the more convenient it will be to use the software. Further,
when it comes to the design of enterprise software, it is generally recommended to
involve different stakeholders, such as managers, prospective users, and IT experts.

Alexander Bock
Research Group Information Systems and Enterprise Modelling, University of Duisburg-Essen,
Essen, Germany. e-mail: alexander.bock@uni-due.de

Ulrich Frank
Research Group Information Systems and Enterprise Modelling, University of Duisburg-Essen,
Essen, Germany. e-mail: ulrich.frank@uni-due.de

1

2 Alexander Bock and Ulrich Frank

Analysing and designing enterprise software requires communicating with people
who have different professional backgrounds, and who therefore speak different
languages. Conceptual modelling has been advanced to help cope with some of
these issues for long. A conceptual model in the traditional sense is an abstraction of
a software system that represents the intended meaning of the system using concepts
that are supposed to be known in the target domain. These domain-specific concepts,
in turn, are conventionally built with generic modelling languages that consist of
basic linguistic constructs (one could also call them ontological constructs) such as
“entity type” or “attribute”.

Building on the notion of conceptual modelling, the idea of enterprise modelling
goes one step further. It emphasizes the need to model not only software systems but
also the context in which these systems are sought to be deployed. This is for two
reasons. First, enterprise software does not work autonomously. It has to be aligned
with the operations of an enterprise and needs to account for the tasks it should
support. Second, taking advantage of the potential benefits offered by IT will often
require to reorganise the organisational action system, e.g., to redesign business
processes, tasks, and maybe even the entire business model. As a consequence, the
analysis and design of software systems and the surrounding organizational action
system should preferably be done in conjunction. Enterprise models are intended
to support this kind of conjoint analysis and design. A minimal enterprise model
integrates at least one model of an enterprise software system (e.g., an object model)
with at least one model of the related action system (e.g., a business process model).
The integration of models is intended not only to foster a better understanding of
dependencies between business and IT, but also to help avoid inconsistencies.

An enterprise model is usually, though not necessarily, presented in the form
of graphical diagrams. While diagrams could be created manually, for economic
reasons it is advisable to employ software-based modelling tools to develop and
utilize enterprise models. Modelling tools promise to help protect the integrity of
enterprise models, to enable navigation through multiple integrated models, and to
improve the reuse of models. They may further enable various kinds of model anal-
ysis and transformations (e.g., model-based code generation). In sum, research on
enterprise modelling needs to consider the construction of modelling tools alongside
the development of enterprise modelling methods.

With this in mind, the present chapter has two purposes. First, it presents a
method for multi-perspective enterprise modelling (MEMO) [9, 15]. Second, it
describes a prototypical implementation of a selected part of the method with
ADOxx [8]. The implemented tool is called MEMO4ADO. To begin, the next sec-
tion summarizes historical developments which led to the method in its current state,
considering both conceptual foundations and different tool development platforms.
Section 2 provides an overview of the major components of MEMO. Section 3 il-
lustrates particular modelling languages and ways of using MEMO. In section 4, the
modelling tool MEMO4ADO is presented. The chapter concludes in section 5.

Multi-Perspective Enterprise Modelling 3

1.2 Historical Background

The development of the method presented here started 1989 in the German National
Research Centre for Computer Science. The centre’s chairman felt inspired by the
vision of fully automated factories and decided to make it the subject of a project
in the business informatics research group. The project’s mission was to develop
a conceptual foundation for promoting the level of automation in organisations.
Very soon the group members agreed that integrative enterprise models would be
required as a tool to support the joint reorganisation of an enterprise and the de-
sign of corresponding information systems. A conceptual high-level framework for
multi-perspective enterprise modelling (MEMO) was created and further developed
in a habilitation thesis [9]. The framework included modelling languages for various
domains such as business processes, organisational structures, corporate strategies,
and object models. Instead of specifying metamodels, the languages were directly
implemented in model editors. The first integrated enterprise modelling environ-
ment was implemented in 1992 with Smalltalk. The screenshot in figure 1 shows an
editor for process models, integrated with parts of role models, object models, and
models of documents.

In the following years, research on the method continued at the university of
Koblenz. A meta-modelling language (MEMO MML) was created [10] and subse-
quently used to specify metamodels of various languages. Based on this foundation,
an entirely new version of the tool environment, called MEMO Center, was devel-
oped in 1997. Despite the undisputed benefits of Smalltalk, it was decided in 2003,
then at the university of Duisburg-Essen, to use Eclipse as the development platform
and Java as a programming language. This decision was based on two assumptions.
First, the Smalltalk community seemed to shrink and Smalltalk environments were
not developed much further. Second, we recognized the need for a meta-modelling
component. For this purpose, the Eclipse Modeling Framework [34] and the Eclipse
Graphical Modeling Framework [21] were chosen as a foundation. The existing
metamodels were represented as Ecore instances. Later, the environment, which
we then called MEMO NG (“next generation”), was supplemented with a meta-
modelling facility that allowed the definition of metamodels with the MEMO MML.
The metamodels were transparently transformed into Ecore instances and could be
used, after some manual extensions, to generate model editors [22].

In parallel to the tool development, our research on modelling languages identi-
fied substantial challenges that concerned the representation of abstraction concepts.
It turned out that these problems were related to principal limitations not only of
our meta-modelling language and the OMG Meta Object Facility (MOF) [27] lan-
guage architecture, but also of mainstream object-oriented programming languages.
To overcome these obstacles, we decided for a radical change, both with respect to
the language architecture and the implementation language. A new recursive lan-
guage architecture has been designed and a corresponding modelling environment
featuring a common representation of models and code is currently under develop-
ment (see subsection 2.4).

4 Alexander Bock and Ulrich Frank

Fig. 1: Screenshot of the first MEMO modelling environment from 1992

2 Method Description

In essence, the enterprise modelling method MEMO extends the basic notion of an
enterprise model with two additional aspects.

(1) Emphasis on perspectives: The notion of perspective is purposefully over-
loaded here. First, it emphasizes the need to account for users with different cogni-
tive dispositions. This suggests to offer concepts and visualisations that correspond
to specific professional interests and related language games. The second concep-
tion is related to the notion of a view. It concerns the idea that specific parts of an
enterprise model are intended to represent, or to relate to, a certain cognitive per-
spective. The third conception is an additional “meta” perspective that demands to
reflect upon the limits of enterprise models to avoid neglecting important aspects
such as informal power relations, symbolic action, and organisational culture.

(2) Use of domain-specific modelling languages (DSMLs): A DSML provides
modellers with concepts that are reconstructed from the relevant domain of dis-
course. It promises to promote modelling productivity because it frees modellers
from the need to reconstruct domain-specific concepts from basic linguistic con-
structs. It also promises to foster model quality because ideally the concepts of a
DSML have been carefully developed by domain experts. Finally, domain-specific
language specifications can include (domain-specific) constraints that prevent, to a
certain extent, the construction of inappropriate models.

Multi-Perspective Enterprise Modelling 5

The construction of MEMO reflects these general considerations. MEMO com-
prises four major components. First, the language architecture includes the meta-
modelling language and defines the relationship between models on different levels
of classification. Second, an extensible set of DSMLs provides the basic instruments
for users of MEMO. Third, a method for designing DSMLs guides the creation
of new modelling languages and the modification of existing languages. Fourth,
users are supported by various modelling methods that are essentially composed
of DSMLs and corresponding process models. Advanced users who want to create
their own methods are guided by a (meta) method for method construction. The
following description (section 2.1-2.3) refers to the original language architecture
of MEMO, as the new recursive language architecture, considered in section 2.4,
cannot be represented within ADOxx.

2.1 Language Architecture and Meta-Modelling Language

The original MEMO language architecture corresponds to the three tier architec-
ture that is also proposed by the OMG Meta Object Facility [27]. Figure 2 illus-
trates its basic structure. The meta-metamodel (see figure 3), which defines the ab-
stract syntax and semantics of the meta modelling language MEMO MML, forms
the linguistic foundation of the method. It is used to specify an extensible set of
DSMLs through metamodels. The metamodels, and, as a consequence, models cre-
ated with the respective DSMLs, are integrated through common meta concepts of
the meta-metamodel and concepts they share directly. In other words, the different
MEMO languages are integrated because each language includes (meta) relation-
ships to concepts specified in other languages (for examples, see section 3.1), and
these integrative relationships are possible only because all languages are defined by
a common meta-modelling language. The language architecture thus constitutes the
enabling basis for integration among MEMO DSMLs. Further, the meta-metamodel
includes constraints that are specified with the OMG Object Constraint Language
(OCL) [28]. To support the creation of modelling editors from metamodels, there is
a mapping from metamodels to corresponding object models.

The latest version of the MEMO MML (see figure 3) for the three tier architec-
ture was introduced in 2011 [13]. Some concepts of the MEMO MML are similar
to concepts of other meta-modelling languages. This mainly concerns basic con-
cepts to specify meta types with attributes and associations. In addition, the MEMO
MML also features concepts which address advanced meta-modelling issues. These
are explained in the following subsection. Lastly, the MML includes a graphical no-
tation that enables the visual distinction between metamodels at level M2 and object
or data models at level M1 (see the example in figure 4).

6 Alexander Bock and Ulrich Frank

Meta Meta Model

Meta Models

Models

instance of

instance of

MML

OML OrgML SML ITML

M1

M2

M3

Fig. 2: MEMO language architecture

2.2 Advanced Meta-Modelling Concepts

While the clear separation of classification levels and the restriction to a fixed num-
ber of classification levels (up to M3) together seem to provide a solid foundation for
(meta) modelling, there are relevant cases that cannot be handled within such a lan-
guage architecture. The MEMO MML accounts for these cases with two additional
concepts, intrinsic features and language level types, which are explained below.

Intrinsic features. When we create a conceptual model, we aim at a certain level
of abstraction. This means that we intentionally fade out aspects that may become
relevant only at lower levels of abstractions. On the other hand, when we design a
conceptual model, we would like to create a specification which is as comprehensive
as possible at the chosen level of abstraction. This means that we would like to
express everything we know at this level, even though it may apply to lower levels
only. Failing to do so would prevent the reuse of existing knowledge and jeopardize
the integrity of models at lower levels of classification.

The following example illustrates the problem. A language for modelling busi-
ness processes (M2) may include a concept “Process”, which could include an at-
tribute such as “maxExecutionTime” that is instantiated at the type level (M1) and
serves to indicate a maximum execution time that applies to all process instances.
In addition to that, we know that every process instance has a certain start and ter-
mination time. However, if we added an attribute such as “startTime” to the meta
type “Process”, we would run into the problem that it would be instantiated at the
type level (M1). This would be wrong because the attribute clearly pertains to the
instance level (M0). The problem is known for some time ([2], [29]), and the only
way to deal with it is to introduce additional concepts in the meta-modelling lan-
guage. Accordingly, the MEMO MML provides “intrinsic features”. These can be

Multi-Perspective Enterprise Modelling 7

MetaObject

languageName : String

MetaModel

isIntrinsic : Boolean (default = false)

MetaConcept

expression : String

Constraint

id : String

Annotation

designator [0..1] : String

roleName [0..1] : String

minCard : MinCardinality

maxCard : MaxCardinality

predecessor : Boolean (default = false)

MetaAssociationLink

MetaCompAttribute

type : MetaRegularType

MetaSimpleAttribute

text : String

Comment

applies tot

ucomposed of

uassociated to

u
s
p

e
c
if
ie

d
 t
h

ro
u

g
h

uspecialized from

u
fe

a
tu

re
 o

f

0..*

1..1

0..*1..1

0..1

0..*

applies tot

0..* 0..*

<super>

1..1

0..*

1..1

1..1

<entity>

context Comment inv:

Comment.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.id <> p2.id)

C1

context MetaEntity inv:

MetaEntity.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.name <> p2.name)

C2

context Constraint inv:

Constraint.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.id <> p2.id)

C3

context MetaAssociationLink inv:

self.minCard <= self.maxCard

C4

context MetaCompAttribute inv:

(self.entity.allSupertypes->includes: self.type) = false

and self.entity <> self type

C9

0..*

0..*

context MetaEntity

def: allAttributes: self.metaCompAttribute->union(self.metaSimpleAttributes)

inv: self.allAttributes->forAll (a1, a2 |

a1 <> a2 implies a1.name <> a2.name)

C7

context MetaAssociationLink inv:

self.isIntrinsic = true implies (self.metaAssocationLink.isIntrinsic = true)

and (self.metaEntity.metaAttribute->exists (a | a.isIntrinsic = true)) and

(self.metaAssociationLink.metaEntity.metaAttribute->exists (a |

a.isIntrinsic = true))

C5

context MetaEntity

def: let allSuperTypes: collect (me | me = me.super)

inv: (self.allSuperTypes-> includes self) = false

C8

context MetaEntity inv:

self.isIntrinsic = true implies self.metaAttribute-> forAll (a | a.isIntrinsic = true)

self.isIntrinsic = true implies self.metaAssociationLinks-> forAll (a | a.isIntrinsic = true)

C6

context MetaEntity inv:

self.metaAssociationLinks->forAll (a1, a2 | a1 <> a2

implies a1.roleName <> a2.roleName)

C11

1..* 1..*

context MetaAttribute inv:

self.minCard <= self.maxCard or (self.minCard = nil

and self.maxCard = nil)

C10

context MetaAssociationLink inv:

self.predecessor = true implies

(self.metaAssocationLink.predecessor = false)

C12

set: MetaEnumeration

MetaEnumAttribute

name : String

minCard [0..1]: MinCardinality

maxCard [0..1]: MaxCardinality

derivable: Boolean

obtainable: Boolean

simulation: Boolean

MetaAttribute

interval: MetaInterval

MetaIntervallAttribute

name : String

isAbstract : Boolean

isSingleton : Boolean

isType: Boolean

MetaEntity

0..1

context MetaEntity inv:

self.isType = true implies (self.isIntrinsic = false)

C15

<typed>

context MetaEntity

inv: self.typed->notEmpty implies self.isType = true

C14

context MetaEntity

def: let allSuperTypes: collect (me | me = me.super)

inv: (self.allSuperTypes->forAll (t | t.isType = true) or

(self.allSuperTypes->forAll (t | t.isType = false)

C13

Fig. 3: MEMO meta-metamodel

used to declare meta types, attributes, and associations as ‘intrinsic’, which means
that they are to be instantiated at level M0 only. In the meta-metamodel, the concept
“MetaConcept” includes the attribute “isIntrinsic”, which is inherited to “MetaEn-
tity”, “MetaAssociationLink”, and “MetaAttribute” to allow entity types, attributes
and associations to be marked as intrinsic. The example in figure 4 illustrates how
intrinsic attributes are represented in metamodels (see the black and white ‘i’ sym-
bol), and it also shows that they are not instantiated in classes at level M1.

Language level types. A further problem caused by MOF-like architectures con-
cerns the fact that objects of different classification levels may not co-exist at the
same level of the architecture. For example, it is not possible that one particular
model simultaneously contains objects from level M1 and M0. While this constraint

8 Alexander Bock and Ulrich Frank

name: String
type: ProcessType
averageDur: Period
external: Boolean
startTime: Time
termTime: Time

Process

type = #semiAutomated
averageDur = 26.4
external: false
active: Boolean
startTime: Time
termTime: Time

Check_Order

c1: Check_Order

M2

M1

M0 active = false
startTime = 10:45
termTime = 11:32

M3

name: String
isAbstract: Boolean
...

Class Feature

name: String
type: Type

1,1 0,*

part of

name: String
type: ProcessType
averageDur: Period
external: Boolean
 startTime: Time
 termTime: Time

Process

type = #semiAutomated
averageDur = 26.4
external: false
active: Boolean
startTime: Time
termTime: Time

Check_Order

i
i

M1

M2

Fig. 4: Illustration of intrinsic features

is for a good reason, it can prevent the construction of perfectly useful models. Take,
for example, a model of a logistic chain. A related DSML might include a concept
such as “MeansOfTransport”, which could be instantiated into types such as “Truck”
or “Boat”. Further, to model a logistic chain, it is essential to include locations. But
modelling a location type such as “City” will usually not be satisfactory. Instead, a
particular location, such as “Vienna”, will be needed. Different from other objects
in a logistic model (which would be located at level M1), however, a location should
be represented as an instance at level M0. But traditional MOF-like architectures
do not permit to mix objects from level M1 (e.g., “Truck”) and M0 (e.g., “Vienna”)
in one model. To overcome this limitation, MEMO allows to mark concepts in a
metamodel (M2) as representing types rather than meta types (using the attribute
“isType”). As a result, these types will be instantiated into instances at the model
level (M1) already. For a corresponding example model, see [13, pp. 23–24].

2.3 A Method for Designing DSMLs

While MEMO is intended to cover relevant domains of an enterprise, it would be
presumptuous to claim that the MEMO languages are sufficient in all cases. On the
one hand, it may happen that a particular DSML needs to be modified. On the other
hand, it may turn out that additional DSMLs are needed. A number of tools support
the specification of DSMLs and the realization of corresponding model editors. But
these tools provide little guidance for the conceptual design of a language for a
specific purpose. This is even more problematic as many prospective users will not
be familiar with the concept of a DSML, which makes requirements analysis for
modelling languages especially challenging.

For these reasons, MEMO was supplemented with a method for designing
DSMLs [14]. It features a macro-level process model that includes eight phases.

Multi-Perspective Enterprise Modelling 9

Each phase is structured by a specific micro-level process. To support requirements
analysis, the method suggests the use of scenarios. A use scenario is characterized
by a problem situation, related questions, and a specific technical language. Use
scenarios can be identified based on relevant past decision and modelling scenarios.
The method further advises to use preliminary diagrams to help prospective users
understand what they can expect from a DSML. To get an idea what information
could be represented in certain diagram types, it is suggested to start with a rudi-
mentary graphical representation and then develop a list of questions related to the
diagram. Analysing these questions can support the systematic identification of con-
cepts to be included in the target DSML. Further guidelines relate to frequent design
decisions to be made during the specification of metamodels (see [14]).

2.4 Next Generation

Even though intrinsic features and type-level concepts enable the construction of
more expressive models, their representation in the meta-metamodel suffers from
the problem that it is almost impossible to implement them satisfactorily with main-
stream object-oriented programming languages. Furthermore, a language architec-
ture that consists of two levels of classification only does not support the refinement,
and, hence, the reuse, of DSMLs on higher levels. For example, a DSML concept
such as “Printer” at level M2 could be specified as an instance of “PeripheralDevice”
at level M3, which in turn could be part of a higher-level DSML. Finally, mainstream
object-oriented programming languages require overloading the M0 layer: Types or
even meta-types are represented as objects at level M0. As a result, it is necessary
to maintain two distinct representations of models and code, which causes the no-
torious problem of synchronisation. The only way to overcome these obstacles is to
abandon the traditional language architecture, both with respect to modelling lan-
guages and programming languages.

A few years ago we decided to pursue such an approach. It led to a radical mod-
ification of the MEMO language architecture. The MOF-like architecture was re-
placed by a recursive “golden braid” architecture that enables an arbitrary number
of classification levels [16]. Furthermore, Eclipse and Java were replaced by XMF
(eXecutable Metamodelling Facility), which includes a (meta) programming lan-
guage that is also based on a recursive architecture ([4], [5]). By integrating the
MEMO meta-metamodel with the meta-metamodel of XMF, both models and code
share a common representation. This architecture enables to build enterprise systems
that are integrated with conceptual models of themselves as well as models of the
environment in which they operate [19]. Such “self-referential” systems can be rep-
resented by interactive models that, when required, may be changed by authorized
users—and changing the model, in turn, would mean changing the system [17].

10 Alexander Bock and Ulrich Frank

3 Method Conceptualization

The previous section gave an outline of the core modelling facilities provided by
MEMO, including its language architecture and meta-modelling language. This sec-
tion presents selected DSMLs, ways of using and constructing related modelling
methods, as well as examples to illustrate the use of MEMO.

3.1 Domain-Specific Modelling Languages

MEMO includes three main languages to model the organisational action system.
The Goal Modelling Language (GoalML) [26] [30] supports the design and analysis
of corporate goal systems. The Organisation Modelling Language (MEMO OrgML)
allows to model organisational structures [11] and business processes [12]. Further-
more, MEMO includes a language to model IT infrastructures (ITML) [24]. The
ITML is integrated with detailed concepts to model (IT-related) costs and assign
them to cost units [23]. Another language is aimed to support knowledge manage-
ment [32]. Recently, a variety of further concepts have been developed, which either
enrich or build on existing languages. These enable to describe organizational deci-
sion processes [3], to model performance indicator systems [35], and to supplement
models of IT infrastructures with IT security aspects [20].

Figure 5 shows meta model excerpts for different MEMO DSMLs and demon-
strates how they are integrated through common concepts. On the basis of these
modelling languages, numerous diagram types can be created. Furthermore, because
the MEMO DSMLs are integrated through shared concepts, diagrams may also be
created using several DSMLs at once. For example, a diagram may include parts of
a business process model referring to goals from a goal model and to IT resources
from an IT infrastructure model (for illustrations, see section 3.2 and 4.4.1).

The MEMO DSMLs resulted from research projects that aimed at developing
elaborate and comprehensive languages. As a consequence, most of the metamod-
els are voluminous and include many constraints. Especially for teaching purposes,
some of the languages turned out to be too heavy-weight, which suggests to either
supplement them with light versions or to provide tool functionality that allows to
hide concepts which are not required for certain scenarios (see section 4 for a dis-
cussion of the related implementation).

3.2 Examples

The following examples aim to give an overview of MEMO DSMLs and the con-
struction of modelling methods (further examples indicating the wide range of pos-
sible use scenarios are found in section 4.4.1). Figure 6 shows the representation
of an enterprise model in the form of various diagrams and selected associations

Multi-Perspective Enterprise Modelling 11

Event

name: String

description: String

role: EventRole

notification: Notification

composed_of u

implemented by u

part of u

OrganisationalUnit

name: String

corporateRelevance: Affirmation

subjectOfOutsourcing: Affirmation

subjectOfReorganisation: Affirmation

Activity

name: String

description: String

ProfessionalPerspective

name: String

description: String

PrimaryActivity

name: String

description: String

OS

challenge: String

OfficeApplication

productivity: Level

usability: Level

SupportActivity

name: String

description: String

Stakeholder

name: String

description: String

Initiative

name: String

description: String

effort: String

minDur: Time

maxDur: Time

internal: Boolean

Target

name: String

description: String

rationale: String

 value: Float

 dur: Time

i

i

Opportunity

name: String

description: String

external: Boolean

chance: Level

Threat

name: String

description: String

external: Boolean

chance: Level

TopManagement

networks: Level

LineManagement

acceptance: Level

Platform

number: Integer

dependency: Level

Resource

name: String

description: String

unit: ResUnit

competitiveness: Level

qualityVariance: Level

cost: Level

ResAllocation

reqVolume: Float

reqQuality: Level

reqAvailability: Level

risk: Level

SoftwareService

subsitutability: Level

Component

challenge: String

ProductionTechnology

flexibility: Level

levelOfAutomation: Level

replacementCost: Level

IT

protectionOfInvest: Level

vendorDependance: Level

Interface

specification: XMLString

SalesForce

softSkills: SkillLevel

productSkills:SkillLevel

RD-Expertise

analyticalSkills: SkillLevel

productSkills: SkillLevel

creativity: Level

IT-Expertise

technicalSkills: SkillLevel

SDSkills: SkillLevel

businessSkills: SkillLevel

academicSkills: SkillLevel

Management

softSkills: SkillLevel

strategicSkills: SkillLevel

creativity: Level

productSkills: SkillLevel

academicSkill: SkillLevel

HumanResource

number: Integer

demand: Level

availability: Level

performance: Level

averageAge: Integer

motivation: Level

ProcessorClass

number: Integer

performance: Level

protOfInvestment: Level

Software

implLanguage: String

numOfLicenses: Integer

maturity: Level

dependency: Level

flexibility: Level

businessBenefit: Level

Middleware

standard: String

persistency: Boolean

EnterpriseApplication

coverage: String

usability: Level

decisionSupport: Level

Service

name: String

description: String

internal: Boolean

quality: Level

availability: Level

cost: Level

relevance: Level

SupportService

remote: Boolean

SoftwareServiceContract

availabilityLevel: AvailLevel

protectionLevel: SecLevel

maintenance: String

SupportServiceContract

availabilityLevel: AvailLevel

maxRespondTime: Time

BusinessProcess

name: String

description: String

 averageDuration: Time

 averageCost: Float

isCore: Boolean

 performance: Performance

o
o

o

Strategy

description: String

priority: Level

established: Boolean

ValueChain

description: String

strength: String

weakness: String

IT-Architecture

integration: Level

reuse: Level

Position

name: String

averageSpan: Float

staff: Boolean

Process

name: String

description: String

 averageDuration: Time

 minDuration: Time

 maxDuration: Time

o

o
o

ServiceContract

precision: Level

adaptability: Level

u

focus on

part of u

part of u

c
o

m
p

ris
e

s u
c
o

m
p

ris
e

s
 u

u

supports

u

takes

Goal

name: String

description: String

priority: Priority

concerns u

directed towards u

concretion of uaimed at u

u

generates

u

generates

supports u competes with u

u

uses

u

part of

u

concretion of

provides u

u

uses

u

in charge of

u

implemented by

u

relates to

u

relates to

u

depends on

u

runs on

part of u

u

part of

u

part of

re
q

u
ire

s
 u

re
q

u
ire

s
 u

a
im

e
d

 a
t u

provided by u

u

measures

u

serves to assess

part of u

re
s
p

o
n

s
ib

le
 f
o

r
 u

re
s
p

o
n

s
ib

le
 f
o

r
 u

Strategy

Organisation

Information System

u

uses

Attribute

name: String

Operation

code: String

Class

name: String

isAbstract: Boolean

Param

name: String

u

part of

u

part of

Signature

name: String

u

represents

u

includes

u

class of

u

returns object of

u

foundation of

u

uses

o

i

obtainable feature

intrinsic feature

Indicator

name: String

formula: String

unitOfMeasure: Unit

intention: String

assumptions: String

potentialBias:String

 value: Float

 date: Date

i
i

description: String

justification: RationalSpec

levelofReliance: Level

presumedIncentive: String

dyfunctionalEffects: String

IndicatorAssignment

applies u

u

triggers

produces u

follows (temporal relationship)

Role

name: String

responsibility: String

u

requires

part of u

class of u

Fig. 5: Excerpt of various integrated metamodels

between them. A goal system diagram represents various types of goals and their
interrelationships. As can be seen, the goal “increase number of sales agents” is re-
lated to a department in the organisational chart which is responsible for reaching
that goal. At the same time, this department is in charge of a particular subprocess
within a business process diagram. A business process diagram shows the control
flow of a particular process type. An overview of different business process types of

12 Alexander Bock and Ulrich Frank

Goal System Diagram

Order
recieved

< Agent >

Check Delivery
Capacity

amount not
available

amount
available

< Agent >

Inform Customer

< Fleet Manager >

Check Logistics

Order
declined

Delivery
possible

Delivery at
desired date
not possible

< Agent >

Confirm Order

< Agent >

Decline Order

Order Management
Product B

<Sales>

Order Management
Product C

<Sales>

Technical Support

<IT Service>

Customer
Akquisition

<Sales>

Complaint Handling
Product A

<Customer Service>

Complaint Handling
Product B

<Customer Service>

Complaint Handling
Product C

<Customer Service>

Order Management
Product A

<Sales>

Sun SPARC

UNIX HP UX

ABAP x

SAP
MDM BL: SAP

PLM

MW: SAP
ERC ECC

SAP CO
P10 6.0

SAP FI
P10 6.0

SAP R&D
P20

SA
P

 A
p

p
 S

er
ve

r
SA

P
 C

lu
st

er OS

DB: ADDS

Scan
Engine

5.1

Document
Arch. 2.0

Dell Power
Edge T110

UNIX HP
UX

DMS
1.9

PLM
3.7

U
n

ix
 H

P
 S

er
ve

r

OS

Organizational Chart

Business Process Map

Business Process Diagram

IT Resource Diagram

Increase
sust. sales
in region

B

1

Sustainable
sales

Increase
number
of sales
agents

4

Number of
sales agents

Keep
labor
costs
stable

3

Labor
costs

Increase
sustainabl

e sales

1

Sustainable
sales

Increase
customer

satisfaction

2

Customer
satisfaction

Increase
sust. sales
in region

A

1

Sustainable
sales

Board of
Directors

Marketing Finance Accounting Sales

Market
Research

Asset
Managemen

t
Systems

Private
Customers

Product
Planning

Corporate
Credits

Controlling
Corporate
Customers

Promotion
Investor
Relations

Decisions
Support

Sales
Forecast

Fig. 6: Interrelated diagrams representing an enterprise model

the enterprise, in turn, is provided by the business process map. The association be-
tween the subprocess “Check Logistics” and the application system “SAP CO P10
6.0” is used to indicate that this application system is required to run the subpro-
cess. Finally, to illustrate how the creation and use of such models can be supported,
figure 7 shows an excerpt of the representation of an example modelling method
that deals with the selection of software systems. MEMO includes a metamodel that
supports the construction of further modelling methods (see [15, pp. 950–954]).

Multi-Perspective Enterprise Modelling 13

Define project goals

Model selected business processes

Describe required software functions

Perform comparison

Review and refine results

Create recommendation

Input

Goals

Constraints

Participants

Diagram Types

Action

Risk

Success Factors

Output

Evaluation

For each process within a business process
diagram identify required software functions.
Describe functions independent from a
specific software using an appropriate
structure. The structure should account for
flexibility aspects implied by possible future
changes.

Macro process Structured description of phase

Fig. 7: Example structure of a process within a MEMO modelling method

3.3 Related Work

A variety of enterprise modelling methods are available. An in-depth comparison
would go beyond scope of this chapter. Therefore, the following overview aims to
point out specific particularities of selected approaches.

Zachman’s framework for enterprise architecture [38] suggests to regard enter-
prise models as integrated conceptual models of data, functions, processes, and other
basic aspects. The framework remains on a high level of abstraction and does not
include specific modelling languages. The “Architecture of Integrated Information
Systems” (ARIS) [33] offers a high-level framework (“House of Business Engineer-
ing”) together with example diagrams. It provides one original modelling language,
the “event-driven process chain”, and refers to existing modelling languages such
as the ERM or DFDs. The method is supported by a comprehensive commercial
toolset. CIM-OSA (“Computer Integrated Manufacturing, Open Systems Architec-
ture”) [1] was aimed at modelling manufacturing firms. In addition to a high-level
framework that covers three dimensions, CIM-OSA includes various templates that
serve to collect data at different levels of abstraction. The completed templates are
considered to represent an enterprise model.

SOM (“Semantic Object Model”) is primarily aimed at supporting system de-
sign and implementation [7]. It combines object-oriented concepts with economic
concepts such as “business transaction”. SOM includes a few modelling languages,
mainly for modelling business processes, transactions, and objects. Different from
most other approaches, SOM is based on a cybernetic conceptualisation of the enter-
prise, which means that it emphasizes the identification and construction of control
loops. A modelling environment is available for SOM. DEMO (“Design and Engi-
neering Methodology for Organisations”) [6] suggests a unique way of modelling
the enterprise. On the one hand, it emphasizes an engineering perspective to support
the systematic design of organisations and the analysis of requirements for enter-
prise software systems. On the other hand, it recommends focussing on collabora-
tion and communication, i.e. on human (inter-)action. DEMO suggests a bottom-up
approach to creating enterprise models by starting with basic transactions. While it
includes various high-level modelling concepts, which are referred to as “ontology”,

14 Alexander Bock and Ulrich Frank

it does not include the full specification of modelling languages. Tools are available
that cover certain aspects of DEMO, but there seems to be no comprehensive tool
environment. The “4EM” (“For Enterprise Modelling”) method [31] provides basic
concepts to model goals, business processes, resources, and related aspects. 4EM
particularly promotes enterprise modelling as a participatory process. To describe
the languages, the authors mainly refer to example models and place less emphasis
on detailed specifications of the abstract syntax and semantics.

TOGAF [36] uses the term “enterprise architecture”, which is related to, but not
identical with, the notion of an enterprise model. TOGAF is promoted by The Open
Group, i.e. it is not an academic project. Its main concern is with the specification
of an extensive process model with eight main phases. The documentation includes
examples of various diagram types but lacks a specification of modelling languages.
ArchiMate [37], also promoted by The Open Group, extends TOGAF with a lan-
guage to model enterprise architectures. The metamodel is underspecified and leaves
room for individual adaptations. ArchiMate modelling tools are freely available.

Taken together, a variety of enterprise modelling methods exist. But different
from MEMO, most of these methods do not include a meta-modelling language.
Furthermore, most of them lack comparably elaborate specifications of DSMLs.

4 Proof of Concept

In this section, we describe the implementation of selected MEMO languages using
ADOxx. The implemented tool is called MEMO4ADO. We decided to use ADOxx
especially for two reasons. First, we embrace the idea of creating an “open mod-
els” platform. We believe that a movement towards the common development and
(re-)use of open models ([18], [25]) is suited to promote the field of enterprise mod-
elling substantially—both in academia and practice. However, we had to learn that
a good idea alone is not sufficient to create a movement. It is important to take ac-
tion and to build incentives. The joint project that is documented in this volume
delivers a wide range of reusable modelling tools that are all based on one platform.
Therefore, there is a good chance to integrate the tools and, as a consequence, to
integrate the models created with these tools as well. This provides a basis to build
an attractive collection of reusable models that may also serve as an incentive for the
development of further extensions. Second, we realized that our DSMLs are too ex-
tensive for teaching purposes. But nonetheless, we wished to involve students in the
development, use, and maintenance of our modelling languages and tools. ADOxx
seemed to be a good choice for this purpose. Using the ADOxx Development and
Modelling Toolkits, we estimated that it would not take students too long to become
productive. The implementation in ADOxx also offered an opportunity to devise a
MEMO version specifically tailored for teaching purposes. Finally, the “open mod-
els” platform provides an attractive vision for teaching: a laboratory of models and
modelling languages that cannot only be navigated and examined by students, but
which may also be the subject of continuous evolution through student projects.

Multi-Perspective Enterprise Modelling 15

4.1 Scope and Objectives of the ADOxx Implementation

The basic purpose of the developed MEMO4ADO tool is to offer an accessible
facility to help grasp the idea of multi-perspective enterprise modelling, especially
for Bachelor’s-level students. In addition, we implemented tool-specific auxiliary
functions for which the ADOxx environment provided a suitable ground.

The ensuing process by which the modelling languages of MEMO have been
implemented was governed by two principal constraints. One concerns the fact that
the modelling environment was sought to be usable for teaching purposes. Because
the full set of MEMO modelling languages was expected to be too complex for
the target group (see section 3), the scope of implementation has been reduced.
From the whole set of MEMO modelling languages, a subset of three languages
was selected for the present implementation: The MEMO OrgML focusing on or-
ganisational structures [11], the MEMO OrgML focusing on business processes
[12], and the MEMO GoalML to describe organisational goal systems [26]. In the
future, selected concepts of other languages will be added, particularly concepts of
the MEMO ITML to describe IT infrastructures [23] [24]. Taken together, these lan-
guages and concepts provide a coherent method subset to aid basic strategic, organ-
isational, and infrastructural analyses (illustrated in section 4.4). But while limited
in number, the selected modelling languages are still complex and comprehensive
in scope. They needed to be further adjusted for the target group. The consequential
narrowing down of the meta models is described in the following section 4.2.

The second constraint which affected the implementation process is related to
the MEMO language architecture. MEMO modelling languages are designed such
that a sharp distinction is made between model elements that are instantiated at
the type level (M1) and at the instance level (M0). To define these relations, the
MEMO meta modelling language [13] provides meta modelling concepts such as
intrinsic features and language level types (see section 2.2). Such meta modelling
concepts are not a part of the ADOxx meta-metamodel [8, p. 8]. The ADOxx meta-
metamodel includes concepts to define meta classes, attributes, and relationships at
level M2, which can be instantiated at type level M1 in the ADOxx Modelling Toolkit
[8, pp. 6–7]. But ADOxx does not offer ways of instantiating and managing instance
populations at level M0 that would represent instantiations of model elements from
level M1. As a result, the selected MEMO meta models had to be redesigned such
that the desired domain aspects could all be modeled at exactly one abstraction level.
The criteria which have been considered in this process are described below.

4.2 Preparation of Meta Models

The concepts, abstract syntax, and parts of the semantics of the MEMO modelling
languages selected for implementation are specified in the form of meta models in
different publications (see [11, p. 50] [12, p. 55] [26, p. 201]). Each meta model in-
cludes a number of meta types (typically 20-40) plus a range of meta relationships.

16 Alexander Bock and Ulrich Frank

The meta models are specified using both common meta modelling concepts such as
‘MetaEntity’ and ‘MetaAttribute’ as well as advanced concepts of MEMO MML,
including intrinsic features, language level types, and attributes marked as ‘deriv-
able’ or ‘obtainable’ (see section 2.1). Additionally, each meta model is augmented
with a set of OCL constraints. The existing MEMO meta models served as a starting
point for the ADOxx implementation. However, in view of the two constraints de-
scribed above (section 4.1), a number of modifications and simplifications had to be
made to the original meta models so that an implementation would become techni-
cally feasible and conceptually adequate for the target group. Because the complete
list of modifications and resulting meta models cannot be presented here, the most
salient implementation tasks are summarized below and illustrated by means of an
example (see figure 8).

Reduction of concepts. In order to advance language accessibility, several con-
cepts were omitted for the tool implementation. This mainly concerns concepts for
advanced users to describe domain details or concepts that represent less intuitive
abstractions. As an example of the former, advanced OrgML control flow concepts
such as ‘while’ or ‘repeat’ loops were not considered. As an example of the latter,
the GoalML concept ‘GoalSystem’ was not implemented (see figure 8). While such
a concept can serve to specify and analyse joint properties of goal systems (e.g.,
the transitivity of goal priorities), we opted not to implement it as we did not see a
sufficiently clear way of embedding it in the initial set of diagram types.

Modification of concepts. For several MEMO language concepts, we chose to im-
plement a modified and simplified conceptualization. The redesign mainly centered
around the aims of easing language use and enhancing tool usability. For instance,
the original GoalML meta model demands to specify a goal and its components in
terms of several distinct concepts, including ‘AbstractGoal’, ‘GoalMatter’, ‘Situa-
tionalAspect’, and various relationships (see the upper part of figure 8). This con-
ceptualization enables to specify a goal in great detail (e.g., it permits to define a
goal whose “substance” is composed of a variety of different real-world aspects). It
also contributes to reuse (e.g., the same goal matter ‘Revenues’ could be referenced
by several goals). However, in the ADOxx Modelling Toolkit, it might be consid-
ered inconvenient to have to create and interlink numerous model elements for the
purpose of creating a single goal. Therefore, we subsumed the formerly distinct goal
components in one central concept (see the lower part of figure 8). This improves
language accessibility—though at the cost of language expressiveness. It remains to
be seen which compromise proves useful in the long term.

Modification of attributes. Most type level attributes of the original MEMO meta
model concepts remained unchanged. Apart from a few data type mismatches, these
attributes were implemented as originally specified. A few type level attributes were
dropped to reduce complexity (compare the upper and lower part of figure 8), but
this did not affect too many attributes. An important feature of ADOxx is the possi-
bility to specify attributes of type ‘Interref’. This enables to have model elements in
one diagram hold references to elements in another. We used this feature to achieve
integration between diagrams to be created with different MEMO languages (see
figure 8 for an example attribute, and see section 4.4 for example diagrams). Be-

Multi-Perspective Enterprise Modelling 17

GoalSystem

organizationalCongruenceDesired : Boolean
preferredLevelOfPrecision [0..1] : Value
transitivityDesired : Boolean
interferenceAllowed : Boolean
maxGoalsPerObject [0..1] : Integer
maxGoalsAccountableFor [0..1] : Integer
 organizationalCongruent : Boolean
 avgLevelOfPrecision : Value
 transitivityAchieved : Boolean

EngagementGoal

 dueDate [0..1] : TimeDate
 referencePeriod [0..1] : TimePeriod
 fulfillmentPeriod [0..1] : TimePeriod
 evaluationDate [0..1] : TimeDate

SituationalAspect

name : String
 value : Value

Precondition

name : String
 fulfilled : Boolean

AbstractGoal

name : String
justification [1..*] : RationaleSpec
generalDirection : DirectionSpec
stateOfType : {in_discussion, approved, abandoned}
typeApprovedOn : TimeDate
absolutePriority : OrdinalValue
timeHorizon : TimeHorizonSpec
continuousFulfillmentRequired : Boolean
 quantifiable : Boolean
 innovativeness : Value
 avgAchievementExpectation : Percentage
 previousInstancesAchieved : Boolean
 valueDevelopment : {up, down, stable}
 instanceName : String
 stateOfInstance : {proposed, ready, effective, terminated}
 dateOfFirstReadiness [0..1] : TimeDate
 dateOfAnnouncement [0..1] : TimeDate
 levelOfPrecision : Value
 difficulty : Value
 achievementExpectation : Percentage
 expectationJustification [1..*] : RationaleSpec
 continuouslyFulfilled : Boolean
 result [0..1] : {achieved, insufficient, exceeded}
 resultDescription : String

0..*

depending_on

0..*

Precondition

name : String
preconditionAspectType : {Indicator, Qualitative, Object}
preconditionValue : String

SymbolicGoal

targetGroup : {internally, externally, all}
targetGroupDescription : String
typeOfAnnouncement : AnnouncementType

GoalCategory

name : String
criterion : String
description : String

0..*

GoalMatter

name : String
description : String
justification [1..*] : RationaleSpec

0..*

1..*

AbstractSituationRelation

value : Value

QualitativeAspect

description : String

InitialSituationRelation

dateOfRecording : TimeDate

TargetSituationRelation

rangeValue [0..1] : Value
valueForm [0..1] : {en-bloc, satisfy, exact, maintain, improve, extremize}
direction : DirectionSpec
valueJustification [1..*] : RationaleSpec
isFocalRelation: Boolean
partialFulfillmentExpedient : Boolean
resultValue [0..1] : Value

0..*

1..*
1..1

1..1

1..1

1,1

0..*

ObjectAspect

description : String
type : {existence, property}
designator : String

part_of

0..* 0..*

d

d

d

i

i

i

i

i

i

subordinate_to

0..1

i

i

i

0..*

1..1

composed_of 0..*1..*

Indicator

d

d

d

d

d

i

belongs_to

0..1

0..*

i

PreconditionSituationRelation

rangeValue [0..1] : Value
valueForm [0..1] : {min, max}

i

i

i

di

i

i

assign
ed

_to

b
ased

_o
n

d
ep

en
d

in
g_o

n

targets

starts_from

GoalMatterSituationRelation

isFocalRelation : Boolean

1..1

1,1

i

0..*

0..*

0..*

d
ep

en
d

in
g_o

n
i

0..*

subordinate_to

0..*

0..*

0..1

i

i

b
ased

_o
n

i

d

subMatter

subCategory

i

Original GoalML Meta Model
(Excerpt)

Implementation GoalML Meta
Model (Excerpt)

Color legend for concepts reused from other MEMO languages:

 MetricML (Strecker et al. 2012)

SymbolicGoal

targetGroup : {Internally, Externally, All}
targetGroupDescription : String
typeOfAnnouncement : {Financial, Press, Memo, Other}

EngagementGoal

dueDate : Date
referencePeriod : String
fulfillmentPeriod : String
evaluationDate : Date

AbstractGoal

name : String
justification : String
goalMatter : String
goalMatterAspectType : {Indicator, Qualitative, Object}
goalMatterAspectObject : Interref
goalMatterDescription : String
generalDirection : {Increase, Keep, Decrease}
absolutePriority : Integer
initialValue : String
targetValue : String
valueForm : {En-bloc, Satisfy, Exact, Maintain, Improve, Extremize}
valueDevelopment : {Up, Down, Stable}
partialFulFillmentExpedient : Boolean
continuousFulfillmentRequired : Boolean
timeHorizon : {Week, Month, Year, Non-Standard}
goalCategory : String
innovativeness : {Low, Medium, High}
difficulty : {Low, Medium, High}
achievementExpectation : Integer
state : {In_Discussion, Approved, Abandoned}
approvedOn : Date

Fig. 8: Meta model preparation example

cause ADOxx keeps track of inter-diagram references and it raises a warning in
case referenced elements would be deleted, this also contributes to model consis-
tency. Beyond the implementation of basic attributes, however, a crucial question
concerned possible ways of implementing ‘intrinsic’ attributes (see below).

18 Alexander Bock and Ulrich Frank

Reconfiguring abstraction levels. MEMO meta models contain elements declared
as ‘intrinsic’. These elements are to be instantiated at level M0 rather than M1. The
ADOxx meta modelling environment does not possess directly comparable (meta)
language concepts. More generally, the ADOxx Modelling Toolkit does not main-
tain an instance level where these elements could in fact be instantiated. But drop-
ping intrinsic elements altogether would not be desirable either, as in some MEMO
languages important domain aspects are captured at that level (e.g., time-related
goal aspects or organisational goal responsibilities, see figure 8). In the end, we
decided to follow a compromise approach. Aspects which clearly relate to singu-
lar occurrences and cannot usefully be considered in the present modelling envi-
ronment were neglected (e.g., attributes such as ‘startTime’ of the concept ‘Con-
rolFlowSubProcess’ [12, p. 55]). Other intrinsic model elements whose assignment
to the instance level is not as unambiguous were moved to the type level to avoid
losing important domain-specific language expressiveness. For example, this con-
cerns time-related attributes of the concept ‘EngagementGoal’. It also concerns the
relationships ‘AccountabilityRelation’ and ‘InitiationRelation’ (see figure 8). These
relationships offer a linking point between goal system diagrams and organisational
structure diagrams. Omitting these relationships would have significantly decreased
the value of the MEMO4ADO tool.

4.3 Process

The implementation was conducted in the form of a small project at our chair, cou-
pled with a few Bachelor’s-level student projects. We decided to involve students
in the process for two reasons. First, implementing modelling languages addresses
skills central for our field—the ability to grasp advanced abstractions (as required
in meta modelling), scrutinizing and integrating domain-specific concepts from the
field of management studies, and technical proficiency. Second, involving students
provided an opportunity to gather first-hand feedback and suggestions on language
and tool usability. At our chair, a few student assistants supported us in implement-
ing the languages.1 Bachelor’s student projects, in turn, were completed by stu-
dent groups of 3-4 persons. From the conducted students’ projects, a project con-
cerned with the OrgML for organisational structures has particularly contributed to
the present tool.2 Figure 9 shows a timeline of implementation milestones.

In our experience, the time needed to complete implementation tasks varied
greatly between different kinds of tasks. The preparation of meta models typically
took considerable time, as it demanded to reconcile different language architectures
(see section 4.2). This task was particularly challenging for Bachelor’s-level student

1 In particular, we would like to thank David Becher for his major contributions to the implemen-
tation of the OrgML (business processes), the GoalML, and the integration of the languages.
2 We would like to thank the project members Jeannot Gerth, Jonas Kaiser, Jesse Okpure, and
Marijan Srsa for their important contributions to the implementation of the OrgML (organisational
structures).

Multi-Perspective Enterprise Modelling 19

Winter Semester 2014/2015 Summer Semester 2015Summer Semester 2014

MEMO GoalML

Language Integration, Constraint
Checks, Auxiliary Functions

Further Languages &
Concepts (ITML, …)

MEMO OrgML: Business Processes

Bachelor’s Student Project: MEMO OrgML:
Organisational Structures

MEMO OrgML: Organisa-
tional Structures

Fig. 9: Implementation milestones

groups because most members were not familiar with advanced meta modelling
concepts at the beginning of the process. The following implementation of selected
concepts and their attributes could usually be done swiftly, as this is a straightfor-
ward exercise in the ADOxx Development Toolkit. The same is true for the concrete
syntax. Then again, what tended to require great effort was the implementation of
additional constraints which accompany all MEMO meta models. In the MEMO
language architecture, these constraints are defined using OCL. In ADOxx, such
constraints can be implemented in the form of manually invocable or event-triggered
routines written in the ADO script language. However, because OCL is a declarative
language and the ADOxx script language is an imperative one, the transformation
was not trivial. It was also complicated by the fact that several MEMO language
constraints are quite complex in nature (see, e.g., [12, pp. 61–63] [26, pp. 203–
207]). In consequence, the present tool is capable of evaluating some, but not all
MEMO language constraints. The implementation of further constraint checks is an
ongoing activity (see figure 9). Finally, the time it took to realize additional auxiliary
functions (such as different levels of notational details; see section 4.4.2) varied with
the nature of the function. In the future, we will continue to add language concepts
of further MEMO languages to the tool (in particular, ITML concepts) and further
enhance the existing implementation with additional features and constraint checks.

4.4 Tool Application and Case Study

On the basis of the MEMO modelling languages, the MEMO4ADO tool provides a
platform to describe various organisational and technological facets of an enterprise
in an integrative manner, enabling various kinds of reflective analyses. The basic
way of using the MEMO4ADO tool consists in creating different core diagrams
that describe selective abstractions of the enterprise in question (i.e., goal systems,
organisational structures, and business process control flows) and to subsequently
interrelate them by means of additional integrative diagrams and references be-

20 Alexander Bock and Ulrich Frank

tween the diagrams. Dependent on the specific MEMO-based method followed, the
diagrams may be created in different partial orders (e.g., top-down considerations
starting with goal systems, or operational analyses starting with business process
control flows; see also sections 2.3 and 3.2). However, it is constitutive of MEMO
that the models are not to be taken as a single-blow approach to specify and af-
terwards implement parts of an organisation (i.e. to “engineer” an enterprise in a
narrow sense). Instead, the models are intended to serve as a means of analysing,
reflecting on, and perhaps rethinking ways of working in iterative, collaborative pro-
cesses. The full scope of possible application scenarios for the languages cannot be
presented here. For details, see the process models and examples in the respective
publications ([12], [13], [26]). To offer an overview of the modelling tool, we first
present the implemented diagram types and illustrate their basic use by means of
an example (section 4.4.1). Subsequently, we describe auxiliary functions that have
been implemented to aid language use (section 4.4.2).

4.4.1 Basic Functionality and Diagram Types

Figure 10 shows an overview case of the different diagram types that can be created
with the MEMO4ADO tool. The figure also illustrates the interrelations between the
different diagram types and exemplifies how model elements defined in one diagram
may be referenced in another. The diagram types are described successively below.

Goal System Diagram (core diagram type; top left). This is the essential MEMO
GoalML [26] [30] diagram type to establish, investigate, and restructure an organ-
isation’s goal system. The diagram type permits to describe goals, of which the
GoalML offers two kinds, and their various possible relationships at a high level of
detail. EngagementGoals describe goals which are mainly established for specific
organisational units and whose attainment can be measured after a given period.
SymbolicGoals are intended to describe goals that serve broader purposes of moti-
vation and inspiration. Each kind of goal possesses a variety of attributes to describe
goal components and properties. For many attributes, dedicated notational sym-
bols are offered whose appearance is automatically adjusted based on the current
attribute value (e.g., absolutePriority, generalDirection, and others). Between all
kind of goals, a variety of relationships can be defined, including decompositional,
means-ends, causal, mathematical, and prioritizing relationships. All of these re-
lationships can be further qualified by attribute values (e.g., conflicting vs. com-
plementary means-ends relationships). The qualifications are visually represented
using different supplementary symbols. For further details on this diagram type and
the possible analyses it supports, see [26, pp. 241–247] [30, pp. 4–7].

Organisational Structure Diagram (core diagram type; middle left). This dia-
gram type, which is based on the MEMO OrgML [12], offers a means of describing
and analysing static aspects of a (formal) organisation. In essence, it can be used to
create more elaborate variants of traditional organisational charts consisting of, and
interlinking, elements such as organisational units, positions, roles, and commit-
tees. In contrast to conventional organisational charts found in textbooks, however,

Multi-Perspective Enterprise Modelling 21

Goal System Diagram
(MEMO GoalML)

Organisational Structure Diagram
(MEMO OrgML: Structures)

Business Process Map
(MEMO OrgML: Processes, GoalML)

Business Process Control Flow Diagram
(MEMO OrgML: Processes)

Goal-Organisational Structure Diagram
(MEMO GoalML, OrgML: Structures)

Fig. 10: MEMO4ADO diagram types

the semantics of the notational elements and relationships are well-described. This
is reflected in a variety of relationships types, including composed of, supervised
by, and subordinated to. In addition to describing basic organisational structures,

22 Alexander Bock and Ulrich Frank

the language permits to record a host of advanced properties for the elements. This
includes attributes to describe the position type (‘Sales’, ‘Technical’, and others),
averagePerformance, or the requiredQualification. For several attributes, again, the
current values are displayed dynamically in the form of visual symbols. For further
details on this diagram type, its variants, and possible uses, see [12, pp. 64–72].

Goal-Organisational-Structure Diagram (integrative diagram type; upper right).
This diagram type enables to integrate elements from an existing organisational
structure diagram with goals taken from an goal system diagram (see above). To
achieve consistency among existing diagrams, the diagram type uses concepts that
reference elements defined in other diagrams. For example, when adding a new
SymbolicGoalReference, the goal ‘Maximize Customer Satisfaction’ defined in the
existing goal system diagram (top left in figure 10) can be referenced (this is imple-
mented using ‘Interref’ attributes). The goal’s name and an inter-diagram link are
adopted automatically. The same can be done to reference organisational units. Hav-
ing established these referential elements, the relationship InitiationRelation can be
used to express which unit or position has initialized or mandated the specification
of a certain goal. The AccountabilityRelation, in turn, permits to define which unit is
responsible for achieving that goal (different degrees of commitment can be defined
using the attribute commitment). In sum, this diagram type allows to clarify interre-
lations between goal systems and organisational units, to the effect that they can also
be traced transparently (by clicking on the links automatically attached to the sym-
bols in the diagram, or using the ADOxx function ‘Follow’). See [26, pp. 247–251]
and [30, pp. 7–8] for further remarks on this diagram type.

Business Process Control Flow Diagram (core diagram type; bottom left). This
diagram type, based on the second part of the MEMO OrgML [13], provides the
ability to specify business process control flows. The essential concepts are sub-
processes and events. For both concepts, different types can be selected (e.g., man-
ual, IT-supported, and fully automated sub-processes; and time-triggered, message-
triggered, or generic change-triggered events). Again, changes of these and other at-
tribute values are signified visually. The organisational units or positions which are
responsible for fulfilling a given sub-process can be specified using the in charge
of attribute, representing another inter-diagram relationship (see figure 10). Sub-
processes and events have to be related alternately by means of the central sub-
sequent relationship. More complex control flow structures can be defined using
parallelization (concept Fork) or exclusive path decision points (concept Decision).
For further details and examples regarding this diagram type, see [13, pp. 89–95].

Business Process Map (integrative diagram type; lower right). This diagram type
distinguishes itself from control flow diagrams in that it provides an overview of
different business process types in an enterprise rather than describing one business
process type in detail. The central concept, business process, offers a reference at-
tribute which allows to link it to a control flow diagram. As a result, business process
maps can be used as a starting point to navigate to richer descriptions of particular
business process types. Business processes may also be related on a macro-level,
such as by means of the relationships supports, may trigger, and similar to. Finally,
because business processes may also be taken as reference objects of organisational

Multi-Perspective Enterprise Modelling 23

Custom Level of Notational Details Auxiliary Text Box View

High Level of Details Low Level of Details

Fig. 11: Auxiliary function examples

goals, this diagram type enables to add references from business processes to ex-
isting goals (using the same concepts as in goal-organisational-structure diagrams).
For example, the organisational goal ‘Minimize Product Shipping Time’ might refer
to the business process type ‘Product Shipping’ (middle of the business process map
in figure 10). Again, the elements in the diagram contain clickable links to directly
navigate to the source diagrams. See [13, p. 89] for further notes on business process
maps and [26, p. 253] for general remarks on goal reference object diagrams.

Taken together, the above diagram types represent a coherent and tightly inte-
grated subset of MEMO diagrams. Using the capabilities of the ADOxx environ-
ment, interrelationships between different areas of an enterprise can be recorded
and explored dynamically. Possible application scenarios, which could only be in-
dicated here, range from strategic goal planning processes to organisational restruc-
turing efforts to process bottleneck analyses. For more details on these and further
capabilities of the languages, refer to the cited language documentations.

4.4.2 Auxiliary Functions and Support in Language Use

While the basic diagram types offer a ground for creating and interlinking various
diagrams, building and using comprehensive enterprise models is still a challeng-
ing task. In order to ease language use and to improve model versatility and inter-
pretability for different target groups, we are continuously adding auxiliary func-
tions to the environment. Three of these are briefly outlined below.

Constraint Checks. The MEMO meta models are accompanied by a number of
constraints to prevent semantically inconsistent or nonsensical models. We imple-
mented a subset of these constraints. Two kinds of constraints exist (see [13, pp. 57–
63]). Ad hoc constraints can be recognized as soon as an invalid model part is cre-
ated. For instance, it is not possible that two positions are the superior of each other
at the same time. When trying to define such a relation, an error message contain-
ing an explanation is shown. Other constraints can be checked only once a model is

24 Alexander Bock and Ulrich Frank

considered complete. For example, a complete business process control flow model
needs to include a start and a stop event. For these kinds of constraints, we imple-
mented the feature ‘Check Model Validity’ (found in the menu). When calling this
function, a model is evaluated and possible errors and confirmation messages are
displayed in the form of a user dialog. Please note that while we are intending to
further extend the scope of constraint checks, the tool does not check the full set of
constraints of the MEMO languages.

Different Levels of Notational Detail. When considering MEMO diagrams such
as those shown in figure 10, it can be found that these diagrams exhibit a level of
notational detail which might be overly complicated for some purposes. To improve
diagram legibility and clarity for these scenarios, we implemented a function that
allows to switch between different levels of detail. This feature is currently available
for the GoalML and perhaps will be added for other languages in the future. The
function is found in the menu. Figure 11 (left-hand side) illustrates a goal system
diagram with a high level of detail as compared to one with a lower level of detail.

Auxiliary Overview Textboxes. Attribute values of model elements can be spec-
ified and investigated using the ADOxx notebook dialog. Sometimes, it may also
be considered helpful to see values of attributes at a glance while interpreting a
diagram. For this purpose, we implemented various additional text box views for
each language. These views attach a basic text box to each model element in which
the values for selected attributes are listed textually. Some modes focus on general
overview attributes, whereas others focus on special topics such as financial aspects.
Figure 11 (right-hand side) shows an example.

Building on the underlying diagram types, the auxiliary functions are meant to
additionally enhance the usability and convenience of the MEMO4ADO tool. Fur-
ther enhancing the scope of these functions, as well as adding further modes of
accommodating tool use are ongoing tasks on our agenda.

5 Conclusion

MEMO is an enterprise modelling method whose development was initiated as early
as two decades ago and which continues to be a subject of active research. Stud-
ies into ways of modelling organisational action systems and information systems
have resulted in an integrated and still growing set of comprehensive modelling lan-
guages. ADOxx is a valuable addition to the modelling environments that have been
used in the history of MEMO. First, ADOxx is highly accessible, both for language
users and meta modelers. For language users, the ADOxx Modelling Toolkit offers
a clear user interface which hides many unnecessary technical (meta) modelling de-
tails. Initial application in Bachelor’s-level modelling courses indicate that students
swiftly learn how to use the MEMO4ADO tool, and that they appreciate the mod-
elling support it offers. Compared to our Ecore- and Eclipse-based tools, we have
the impression that ADOxx is regarded as more intuitive and ergonomic. We also see
that ADOxx facilitates the developer’s task, as the pre-defined meta level concepts

Multi-Perspective Enterprise Modelling 25

provided in the Development Toolkit represent a convenient basis to develop mod-
elling languages for two-level language architectures. We furthermore appreciate
that ADOxx represents a stable and mature environment. Finally, ADOxx provides
a basis for implementing a host of additional features, drawing on its capabilities
for model analysis and the incorporated ADO script language. The benefits of these
features are exemplified in this and the other contributions in this volume.

At the same time, investigations into the nature of reconstructing professional
languages by means of conceptual (meta) models have led us to conclude that tradi-
tional two-level language architectures do not suffice to satisfy advanced modelling
requirements. These insights have, as a first step, stimulated the development of ad-
vanced meta modelling concepts for three-level language architectures (e.g., “intrin-
sic features”, discussed in this contribution). These concepts could not directly be
translated to the ADOxx language architecture. Furthermore, our work on the spec-
ification of modelling languages confirmed the assumption that a flexible number
of classification levels promotes reusability and flexibility of models and languages.
In addition, the simultaneous use of a programming language that also features an
arbitrary number of classification levels allows the common representation of mod-
els and code. Because an account of an arbitrary number of classification levels is
beyond the scope of most current modelling tools, including ADOxx, we are now
working on an XMF-based tool that in fact provides the ability to create multilevel
models and multilevel software systems that share the same representation [16]. The
further development of this tool as well as the reconstruction of existing MEMO lan-
guages for a corresponding architecture is where our future research is heading.

The MEMO4ADO tool presented in this chapter is meant to provide a platform to
dynamically create and explore enterprise models on a coherent, limited scope. The
tool focuses mainly on concepts to model aspects of organisational action systems
(e.g., goals, structures, and processes). By utilizing the capabilities of ADOxx, it es-
pecially enables to recognize and trace links between different areas of an enterprise.
We intend to use the tool in the context of a Bachelor’s-level modelling course as a
laboratory in which students are asked to investigate an existing multi-perspective
enterprise model and to extend it with further partial models, such as new business
processes. Future development of MEMO4ADO will include the implementation
of further auxiliary functions and the integration of additional concepts from other
MEMO languages. For example, we wish to add concepts from MEMO ITML [23]
to provide the ability to describe information systems infrastructures and to enable
additional diagram types in which IT concepts can be interrelated with elements of
the organisational action system.

References

1. CIMOSA: Open system architecture for CIM. Springer, Berlin, Heidelberg, New York (1993)
2. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Software &

Systems Modeling 7(3), 345–359 (2008)

26 Alexander Bock and Ulrich Frank

3. Bock, A.: Beyond Narrow Decision Models: Toward Integrative Models of Organizational
Decision Processes. In: D. Aveiro, U. Frank, K.J. Lin, J. Tribolet (eds.) Proceedings of the
17th IEEE Conference on Business Informatics (CBI 2015). IEEE Press, Los Alamitos (2015)

4. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling: A Founda-
tion for Language Driven Development, 2 edn. Ceteva (2008). URL
http://www.eis.mdx.ac.uk/staffpages/tonyclark/Papers/Applied%20Metamodelling%20%28Second%20Edition%29.pdf

5. Clark, T., Willans, J.: Software language engineering with XMF and XModeler. In: M. Mernik
(ed.) Formal and Practical Aspects of Domain-Specific Languages, pp. 311–340. Information
Science Reference (2012)

6. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Berlin, New York
(2006)

7. Ferstl, O.K., Sinz, E.J.: Modeling of business systems using SOM. In: P. Bernus, K. Mertins,
G. Schmidt (eds.) Handbook on Architectures of Information Systems, pp. 347–367. Springer,
Berlin and Heidelberg, New York (2006)

8. Fill, H.G., Karagiannis, D.: On the conceptualisation of modelling methods using the ADOxx
meta modelling platform. Enterprise Modelling and Information Systems Architectures 8(1),
4–25 (2013)

9. Frank, U.: Multiperspektivische Unternehmensmodellierung: Theoretischer Hintergrund und
Entwurf einer objektorientierten Entwicklungsumgebung. Oldenbourg, München (1994)

10. Frank, U.: The MEMO Meta-Metamodel. Research Report of the Institute for Business Infor-
matics 9, University of Koblenz, Koblenz (1998)

11. Frank, U.: MEMO Organisation Modelling Language (1): Focus on Organisational Structure.
ICB Research Report 48, University of Duisburg-Essen, Essen (2011)

12. Frank, U.: MEMO Organisation Modelling Language (2): Focus on Business Processes. ICB
Research Report 49, University of Duisburg-Essen, Essen (2011)

13. Frank, U.: The MEMO Meta Modelling Language (MML) and Language Architecture: 2nd
Edition. ICB Research Report 43, University of Duisburg-Essen, Essen (2011)

14. Frank, U.: Domain-specific modeling languages - requirements analysis and design guidelines.
In: Reinhartz-Berger, Iris, Sturm, Aron, Clark, Tony, Wand, Yair, Cohen, Sholom, Bettin, Jorn
(eds.) Domain Engineering: Product Lines, Conceptual Models, and Languages, pp. 133–157.
Springer (2013)

15. Frank, U.: Multi-perspective enterprise modeling: foundational concepts, prospects and future
research challenges. Software & Systems Modeling 13(3), 941–962 (2014)

16. Frank, U.: Multilevel modeling: Toward a new paradigm of conceptual modeling and infor-
mation systems design. Business and Information Systems Engineering 6(6), 319–337 (2014)

17. Frank, U.: Power-modelling: Toward a more versatile approach to creating and using concep-
tual models. In: Proceedings of the Fourth International Symposium on Business Modelling
and Software Design, pp. 9–19 (2014)

18. Frank, U., Strecker, S.: Open reference models – community-driven collaboration to promote
development and dissemination of reference models. Enterprise Modelling and Information
Systems Architectures 2(2), 32–41 (2007)

19. Frank, U., Strecker, S.: Beyond ERP Systems: An Outline of Self-Referential Enterprise Sys-
tems. ICB Research Report 31, University of Duisburg-Essen, Essen (2009)

20. Goldstein, A., Frank, U.: Components of a multi-perspective modeling method for designing
and managing it security systems. Information Systems and e-Business Management (2015,
in press)

21. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley, Amsterdam (2009)

22. Gulden, J., Frank, U.: MEMOCenterNG – a full-featured modeling environment for organi-
sation modeling and model-driven software development. In: Proceedings of the 2nd Interna-
tional Workshop on Future Trends of Model-Driven Development (FTMDD 2010) (2010)

23. Heise, D.: Unternehmensmodell-basiertes IT-Kostenmanagement als Bestandteil eines inte-
grativen IT-Controllings. Logos, Berlin (2013)

24. Kirchner, L.: Eine Methode zur Unterstützung des IT-Managements im Rahmen der Un-
ternehmensmodellierung. Logos, Berlin (2008)

Multi-Perspective Enterprise Modelling 27

25. Koch, S., Strecker, S., Frank, U.: Conceptual modelling as a new entry in the bazaar: The open
model approach. In: E. Damiani, B. Fitzgerald, W. Scacchi, M. Scotto, G. Succi (eds.) Open
Source Systems, pp. 9–20. Springer, New York (2006)

26. Köhling, C.A.: Entwurf einer konzeptuellen Modellierungsmethode zur Unterstützung ratio-
naler Zielplanungsprozesse in Unternehmen. Cuvillier, Göttingen (2013)

27. Object Management Group: Meta Object Facility (MOF) Core Specification: Version 2.0
(2006). URL http://www.omg.org/spec/MOF/2.0/

28. Object Management Group: Object constraint language: Version 2.2 (2010). URL
http://www.omg.org/spec/OCL/2.2/

29. Odell, J.J.: Power types. Journal of Object-Oriented Programming 7(2), 8–12 (1994)
30. Overbeek, S., Frank, U., Köhling, C.A.: A language for multi-perspective goal modelling:

Challenges, requirements and solutions. Computer Standards & Interfaces 38, 1–16 (2015)
31. Sandkuhl, K.: Enterprise Modeling: Tackling Business Challenges with the 4EM Method. The

Enterprise Engineering Series. Springer, Berlin (2014)
32. Schauer, H.: Unternehmensmodellierung für das Wissensmanagement: Eine multi-

perspektivische Methode zur ganzheitlichen Analyse und Planung. VDM, Saarbrücken (2009)
33. Scheer, A.W.: Architecture of Integrated Information Systems: Foundations of Enterprise

Modelling. Springer, Berlin, New York (1992)
34. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,

2 edn. Addison-Wesley, Upper Saddle River (2009)
35. Strecker, S., Frank, U., Heise, D., Kattenstroth, H.: MetricM: A modeling method in support

of the reflective design and use of performance measurement systems. Information Systems
and e-Business Management 10(2), 241–276 (2012)

36. The Open Group: TOGAF Version 9. The Open Group Series. Van Haren, Zaltbommel (2009)
37. The Open Group: ArchiMate 2.0 Specification: Open Group Standard. The Open Group Se-

ries. Van Haren, Zaltbommel (2012)
38. Zachman, J.A.: A framework for information systems architecture. IBM Systems Journal

26(3), 276–292 (1987)

